The fourier series of the function f(x)
a(0) / 2 +
(k=1..
) (a(k) cos kx + b(k) sin kx)
a(k) = 1/PIf(x) cos kx dx
b(k) = 1/PIf(x) sin kx dx
remainder(n) = f(x) - Sn(x) = 1/PI
Sn(x) = 1/PI 
f(x+t) Dn(t) dt
Dn(x) = Dirichlet kernel = 1/2 + cos x + cos 2x + .. + cos nx = [ sin(n + 1/2)x ] / [ 2sin(x/2) ]
lim(k->
) 
f(t) cos kt dt = lim(k->
)
f(t) sin kt dt = 0
A(0) / 2 +
(k=1..
) [ A(k) cos (k(PI)x / m) + B(k) (sin k(PI)x / m) ]
a(k) = 1/mf(x) cos (k(PI)x / m) dx
b(k) = 1/mf(x) sin (k(PI)x / m) dx
1/PI 
f^2(x) dx = a(0)^2 / 2 +
(k=1..
) (a(k)^2 + b(k)^2)
f(x) = 
( a(y) cos yx + b(y) sin yx ) dy
a(y) = 1/PIf(t) cos ty dt
b(y) = 1/PIf(x) = 1/PIf(t) sin ty dt
if f(x) = f(-x) then
f(x) = 2/PIif f(-x) = -f(x) thencos xy dy
f(t) cos yt dt
f(x) = 2/PIsin xy dy
sin yt dt
Fourier Cosine Transform
g(x) =
(2/PI)
f(t) cos xt dt
Fourier Sine Transform
g(x) =
(2/PI)
f(t) sin xt dt
If f(-x) = f(x) then
Fourier Cosine Transform ( Fourier Cosine Transform (f(x)) ) = f(x)If f(-x) = -f(x) then
Fourier Sine Transform (Fourier Sine Transform (f(x)) ) = f(x)
No comments:
Post a Comment