Trigonometric Basics
Basic Trigonometric Values
Trigonometric Formulas
From Pythagorean theorem,
in degrees | in radians | |||
---|---|---|---|---|
0° | 0 | 0 | 1 | 0 |
30° | ||||
45° | 1 | |||
60° | ||||
90° | 1 | 0 | Not defined | |
180° | 0 | -1 | 0 | |
270° | -1 | 0 | Not defined | |
360° | 0 | 1 | 0 |
Degrees to Radians and vice versa
360°=2π radian
Trigonometry Quotient Formulas
tanθ=sinθcosθ
cotθ=cosθsinθ
Trigonometry - Reciprocal Formulas
cscθ=1sinθ
secθ=1cosθ
cotθ=1tanθ
Trigonometry - Pythagorean Formulas
sin2θ+cos2θ=1
sec2θ−tan2θ=1
csc2θ−cot2θ=1
Trigonometry - Even-Odd Formulas
sin(−θ)=−sinθ
cos(−θ)=cosθ
tan(−θ)=−tanθ
csc(−θ)=−cscθ
sec(−θ)=secθ
cot(−θ)=−cotθ
Trigonometry - Periodic Formulas
if n is an integer,
sin(θ+2πn)=sinθ
cos(θ+2πn)=cosθ
tan(θ+2πn)=tanθ
csc(θ+2πn)=cscθ
sec(θ+2πn)=secθ
cot(θ+2πn)=cotθ
(In these formulas, θ is mentioned in radians. If θ is in degrees, substitute 360° for2π )
if n is an integer,
(In these formulas, θ is mentioned in radians. If θ is in degrees, substitute 360° for
No comments:
Post a Comment